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1. INTRODUCTION

The WARMF model has been applied to the Catawba River Basin that extends from the
headwaters of Lake Jamesin North Carolinato Lake Wateree in South Carolina. The model for
the entire system has been calibrated for the time period of 1992 to 1996.

Drs. Hank McKellar and Daniel Tufford of the University of South Carolina (USC) received an
EPA 319 grant to develop TMDLs for streams and reservoirs in the Lower Catawba River
System. With this grant, they collected stream water quality data for sub watershed tributary to
Fishing Creek Reservoir. Systech Engineering, Inc. was subcontracted to extend the database to
year 2001 and to calibrate the model with the new observed data and available water quality data
of the Lower Catawba River from Lake Wylieto Lake Wateree. The report for the modeling
work was submitted in early 2002 (Systech 2002).

During a watershed group meeting, stakeholders raised concerns regarding the quality of some
data used to calibrate the model. Details of questioned data are discussed in Chapter 2. It was
suggested to remove or modify those questioned data and to recalibrate the model anew. This
report is prepared to document the results of such effort.

Since the release of the original calibration report (Systech 2002), WARMF has been upgraded
to model BOD as a separate water quality parameter rather than as a part of dissolved organic
carbon, which is supposed to represent long chain organic acids from the decay of organic matter
in land catchments. Algorithmsin the model related to phosphorous adsorption to sediment and
algae in lakes were a'so made more flexible by giving related parameters more spatial variation.
This report documents the result of these modifications.
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2. DATA REVISIONS

Data used to calibrate the WARMF model are compiled from avariety of sources. Typically
these sources include databases maintained by state and federal agencies such as USGS or state
environmental protection agencies. Published data from these agencies usually undergo quality
assurance/quality control measures to ensure accuracy. It isnot uncommon, however, that errors
are later found in the data and that revisions are made. Thiswas the case with some of the data
used during the original round of calibration for the Lower Catawba River Watershed study. The
guestioned data are 1) the stream water quality data collected by USC in the Fishing Creek
Region; 2) the point source data for a discharger on the Catawba River above Fishing Creek
Reservoir; and 3) the monitoring data at water quality stations maintained by the South Carolina
Department of Health and Environmental Control (SCDHEC).

USC DATA ON FISHING CREEK

The data, collected by the University of South Carolina (USC) in Fishing Creek, was deemed
inappropriate for usein model calibration. Table 2-1 isalist of the USC stations from which
datawas removed, and Figure 2-1 shows the location these stations.

In place of the USC data, the water quality data collected by the Analytical Laboratory of Duke
Energy Company was added to the observed water quality file of Fishing Creek. The station is
Fishing Creek at County Road 347 (FishCr347.orc), which is same asthe USC Station 5. The
data was collected in November 9 and 10, 2000, during which there were storm water runoff.
Therefore the data includes measurements of ammonia, nitrate, total nitrogen, ortho-phosphate,
and total phosphate, resulting from some nonpoint source loads of tributary watershed.

Table 2-1
Data stations at which USC data was removed
usc
station
No. | File name ID Description
1 | FishBr.orc 49 Fishing Br at SC 49
2 | FishCrl6l.orc 161 Fishing Cr u/s of Res. SC 161
3 | LanghamBr.orc LB Langham Branch at SC #5 in City of York
4 | FishCr1172.orc 1172 Fishing Cr at Co Rd 1172
5 | FishCr347.orc 347 Fishing Cr at Co Rd 347
6 | FishCr3.orc RR Fishing Cr at S-46-503
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Figure2-1
Location of University of South Carolina water quality sampling stations.

BOWATER POINT SOURCE DATA

The point source data of Bowater Inc. retrieved from the EPA PCS was found to have errors.
Flow and dissolved oxygen (DO) data were corrected for the period from February 1999 to April
2001. Therevised point source filein WARMF is “ SC0001015.pts.” Figure 2-2 showsthe
location of Bowater point source discharge, i.e. on the Catawba River downstream of the
confluence of Twelve Mile Creek.
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Figure 2-2
L ocation of Bowater point source discharge.

SCDHEC PHOSPHOROUS DATA

The concentrations of nutrients are routinely measured in South Carolina Surface Water Quality
Monitoring Program (SCDHEC 2002). Total phosphorous (TP) and other nutrient are measured
at more than 60 locations within the Catawba River Basin (Figure 2-3). Data stationsarein red
triangles. The stations relevant to this study are red triangles inside the watershed boundary
shown in thick black line.
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Figure 2-3
Locations of SC DHEC surface water quality monitoring stations.

The SCDHEC has found errors in the TP measurements from July 1998 to December 2001.
These data have been deleted from the WARMF database. Datafor other period remain in the
database.

Table 2-2 shows the sampling stations where TP data have been removed. Several other stations
have SC DHEC data, free of TP error. Also SC DHEC maintains some stationsin North
Caroling, e.g. “LITSUG.ORC” (CW-593), “SUGARL.ORC” (CW-592).
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Table 2-2
SCDHEC stations at which TP data was removed.

SC DHEC

No. | File name station Description

1 | ABVWAT.ORC CW-231 | Catawba R approx. 50 yds d/s of Cedar Cr

2 | ALLISON.ORC CW-171 | Allison Cr at US-321, 3.1 mi S of Clover

3 | BEAR.ORC CW-151 | Bear Cr at S-29-362, 3.5 mi SE of Lancaster

4 | BEAR2.ORC CW-131 | Bear Cr at S-29-292 1.6 Mi W of Lancaster

5 | BEAVERDAM.ORC CW-153 | Beaver Dam Cr At S-91-152, 8 mi. E of Clover

6 | CALABASH.ORC CW-134 | Calabash Br at S-91-414, 2.5 SE of Clover

7 | CAMP.ORC CW-235 | Camp Cr at SC 97

8 | CANE.ORC CW-017 | Cane Cr on County Rd 50 near Irwin Farm

9 | CANE2.ORC CW-185 Cane Cr at SC-200, 5 mi. N-NE of Lancaster

10 | CATABVFC.ORC CW-041 | Catawba R at SC 5, above Bowater Corp. effluent
11 | CATBELWY.ORC CW-014 | Catawba R at US 21

12 | CROWDER.ORC CW-023 | Crowders Cr at Ridge Rd near Bowling Green
13 | CROWDER2.0RC CW-152 | Crowders Cr at US 321, 0.5 mi N of NC border
14 | CROWDER3.0RC CW-192 | Crowders Cr at S-91-79, 4.5 mi NW of Clover
15 | FISHBR.ORC CW-029 | Fishing Br at SC 49

16 | FISHCR1.0RC CW-008 | Fishing Cr at SC 223 NE of Richburg

17 | FISHCR2.0LC CW-057 | Fishing Cr Reservoir 75 ft above dam

18 | FISHCR2.0RC CW-224 | Fishing Cr at S-46-163

19 | FISHCR3.0RC CW-225 | Fishing Cr at S-46-503

20 | FISHCR4.0RC CW-233 | Fishing Cr at S-12-77

21 | GILLS.ORC CW-047 | Gills Cr at Unimpr. Rd S-29-56 N-NW of Lancaster
22 | GRASSY.ORC CW-088 | Grassy Rn Bron SC 72, 5 mi. S-SW of Rock Hill
23 | LITSUGAR.ORC CW-593 | Little Sugar Cr at US Hwy 521 in NC

24 | LITTLEWAT.ORC CW-040 | Little Wateree Cr at S-21-41, 5 mi. E of Winnsboro
25 | MCALP2.0ORC CW-226 | Mc Alpine Cr at US 521 in NC

26 | MCALP5.0RC CW-064 | Mc Alpine Cr at S-29-64

27 | MCMULLEN.ORC CW-684 | McMullen Cr at NC Hwy 51

28 | NEELYS.ORC CW-227 | Neelys Cr At S-46-997

29 | ROCKY1.0RC CW-236 | Lower Rocky Cr

30 | ROCKY2.0RC CW-175 | Rocky Cr On S-12-141 SE of Great Falls

31 | ROCKYUP.ORC CW-002 | Rocky Cr At S-12-335, 3.5 mi E of Chester

32 | RUM.ORC CW-232 | Rum Cr At S-29-187

33 | STEELE.ORC CW-011 | Steel Cr At S-91-270

34 | STEELE3.ORC CW-009 | Steel Cr At S-91-22 N of Fort Mill

35 | SUGAR1.0RC CW-592 | Sugar Cr At NC Hwy 51 at Pineville, NC

36 | SUGAR2.0RC CW-036 | Sugar Cr On Sec. Rd 36

37 | SUGAR3.0RC CW-627 | Sugar Cr u/s of confluence with McAlpine Cr

38 | SUGAR4.0RC CW-013 | Sugar Cr near Fort Mill

39 | TINKERS.ORC CW-234 | Tinkers Cr at S-12-599

40 | TWELVE2.0RC CW-083 | Twelve Mile Cr at S-29-55, 0.3 mi NW of Van Wick
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41 | UNAMD.ORC CW-221 | Un-named trib to Catawba R. at SC-161, 0.4 mi off 7
42 | WATEREE2.0LC CW-207 | Lk Wateree at end of S-20-291

43 | WATEREE3.OLC CW-209 Lower Lk Wateree

44 | WATEREES.OLC CW-208 | Lk Wateree at S-20-101, E-NE of Winnsboro

45 | WILDCAT.ORC CW-096 | Wildcat Cr at S-91-998, 9 mi. E-NE of McConnels
46 | WILDCAT2.0RC CW-006 | Wildcat Cr at S-91-650

47 | WYLIE16.0LC CW-027 | Lk Wylie, segment 16

48 | WYLIE17.0LC CW-665 | Lk Wylie, segment 17

49 | WYLIE5S.0LC CW-197 | Lk Wylie, segment 5

50 | WYLIE9.OLC CW-230 | Lk Wylie, segment 16
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3. MODEL REFINEMENTS

GENERAL

WARMF periodically undergoes modifications to its computer code in response to the objectives
of aparticular model application. WARMF was recently updated to provide greater flexibility in
assigning parameters related to adsorption and algae (phytoplankton) growth in reservoirs.
Though these modifications do not change the actual representation of these processesin the
model code, they are required to facilitate the calibration of nutrients and algae by alowing more
flexibility in setting model coefficients.

Other changes in computer code of WARMF were made as part of general model maintenance.
Changes to the representation of biological oxygen demand (BOD) in WARMF fall under this
category. Previousy, WARMF BOD was modeled in terms of dissolved organic carbon (DOC).
DOC includes organic carbon or organic acids that are produced by the decay of organic matters
in land catchments. Previously, BOD loading was converted to DOC using basic stoichiometry,
and then the decomposition of DOC and the resulting consumption of oxygen were tracked in the
model. Because of a concurrently developing application of WARMF for mercury TMDLS, this
algorithm has been upgraded to simulate BOD and DOC separately. BOD now represents the
oxygen consuming organic matter discharged by wastewater treatment plants. DOC now
represents the organic acids, which are aprincipal carrier of mercury through the watershed
system.

ADSORPTION ISOTHERM

In WARMF phosphorous dissolved in the water column may adsorb to sediment. The
adsorption isotherm parameter in the model controls the sediment adsorption capacity of
constituents. This parameter is commonly used during model calibration to partition the
dissolved and adsorbed fractions of a constituent. The isotherm can apply to soil pore water and
also to the water column of rivers and lakes.

Theriver and lake water column isotherm was recently modified to allow more flexibility during
calibration. Previoudly, the isotherm for suspended particles in the water column was not
allowed to vary between regionsin a given watershed. Now this parameter can vary by river
segment and reservoir so that adsorption processes in large multi-reservoir watersheds can be
more accurately model ed.

This parameter should be adjusted with caution. Aswith many model parameters, it should be
verified that significant variations of this parameter especially between adjacent river segments
do not unrealistically affect the simulation. It is suggested that this parameter vary significantly
only between subwatersheds divided by areservoir. Asan example, it was verified that varying
the isotherm from subwatershed to subwatershed with areservoir in between from approximately
5,000 L/kg to 20,000 L/kg did not cause unrealistic dissolved or adsorbed values for the Catawba
River Watershed. A precautionary note is shown in the river and reservoir adsorption input
dialog boxesin WARMF, shown in Figure 3-1 and Figure 3-2.
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Phosphate 20000
Org. Carbon 107.184
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Silica ]
Copper 728.043
BOD 0 |
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Apply Changes To Selected
Apply Changes Tao All
¢| Write Output To File

? Help

Figure3-1

WARMF River Input Dialog Showing River-Dependent Adsor ption Coefficients.
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Heat/Light |  Diffusion |  Sediment |  Initial Temp. |  Initial Conc. |
FPhysical Data ] otage-Flow l Reactions l FPhytaplankton l
Foint Sources Adsorption l Observed Data l Stage-Area ] Clutlets l hletearology l
Amm.unla 6233.81 | Adsorption Isotherms, L'kg
Aluminum 1]
Calcium 472.552
Magnesium 404.556
Potassium 197.971 Mote: Adsorption isotherms should
Sodium 20.7365 be changed with_diacret?nn. 'I_'he_j,r
16.2596 should not vary river to river within a
Sulfate : subwatershed region.
Nitrate ]
Chloride 0
Phosphate 20000
Org. Carbon 107.184
Inorg. Carbon ]
Org. Aluminum ]
Silica ]
Copper 728.043
BOD 0 =
* single segment Apply Changes To Selected
multiple segment Apply Changes To All
CE-QUAL-W2 ¥ | YWrite Output To File

/ [k annceI ? Help
Figure 3-2

WARMF Lake Input Dialog Showing Reservoir-Dependent Adsor ption Coefficients.

The model enhancement to allow spatially varying adsorption isotherms did not significantly
change model calibration results. These changes did, however, give the USC researchers
flexibility to make adjustments to improve the final calibration for phosphorus. Calibration
results for total phosphorus are presented in Chapter 5 of this report.

ALGAE PARAMETERS

The ability to adjust parameters affecting algae growth was also improved. Previous versions of
the model required algae parameters (growth rates, temperature coefficients, nutrient half
saturation rates) to be constant for all reservoirs within awatershed. Now, the parameters can
vary by reservoir. Thisisaparticular benefit to large systems such as the Catawba River
watershed where algae communities and the conditions affecting them likely vary between
reservoirs. Thelakeinput dialog listing algae input variablesis shown for Fishing Creek
Reservoir in Figure 3-3.
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Fizhing Creek Reservoir

Foint Sources ] Adsorption ] Observed Data l otage-Area ] Cutlets l Meteoralogy l

Heat/Light | Diffusion |  Sediment |  Initial Temp. | Initial Conc. |
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BlueGreen | Diatoms |GrEEI‘I Algae | =
Maximum Growth, 1/day 1.1 0.9 1
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Settling Bate, 1}day 0.1 0.2 0.2
Nitrogen Half Sat., mgfL 0.01 0.01 0.01
Phosphorus Half Sat., mgfL 0.005 0.00% 0.005
Silica Half Sat., mqfL 0.05 0.05 0.05
Light Half Sat.. Wim2 110 110 110
Lower Growth Temp, C 15 0 12
Upper Growth Temp, C 40 13 30
Optimum Growth Temp, C 208 b 22 —
1 [
* single segment Apply Changes To Selected
multiple segment Apply Changes To All
CE-QUAL-W2 ¥ | YWrite Output To File

/ [k annceI ? Help
Figure 3-3

WARMF Lake Input Dialog Showing Reservoir-Dependent Phytoplankton Coefficients.

The model enhancement to allow spatially varying phytoplankton coefficients does not
necessarily change calibration results. Again, these changes allow the USC researchers greater
flexibility to adjust calibration for chlorophyll-a and nutrients. Calibration results for
chlorophyll-a and nutrients are presented in Chapter 5 of this report.

BOD MODEL RESULTS

To better represent the oxygen consumption due to BOD loading, an explicit BOD state variable
was added to WARMF. The main source of BOD loading in the Catawba River watershed is
municipal point sources. A small fraction of nonpoint BOD loading is assumed to come from
animal waste on the land surface. WARMF decays BOD using afirst order reaction.

The resulting BOD concentration in streams and lake were compared to observed data. Figure
3-4 shows the simulated and observed BOD for the Catawba River above Sugar Creek. In
genera, the simulated follows the fluctuation of the observed. The model also slightly under-
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predicts some of the higher levels of BOD; thus the simulated average is sightly lower that that
of the observed data. The average observed and simulated concentrations are 0.8 mg/l and 1.0
mg/l, respectively.

Figure 3-5 compares the smulated and observed BOD in the Catawba River downstream of
Sugar Creek confluence. The observed BOD data vary from 0.5 mg/l to nearly 3 mg/l, while the
simulated varies from less than 0.6 mg/l to 2 mg/l. The model under predicts the maximum
observed BOD by about 1 mg/l. However, the simulated and the observed have similar averages.

Figure 3-6 shows the comparison of simulated and observed BOD at station SC 223 on Fishing

Creek (approximately half way between the headwaters and mouth of the creek). Both simulated
and observed BOD values average bout 2 mg/l. Their values can vary between 1 and 5 mg/I.

Catawba River above Sugar Cr. - BOD, mg/l | _ O] x|
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Figure 3-4
Simulated and Observed BOD in the Catawba River upstream of Sugar Creek.
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Figure 3-5

Simulated and Observed BOD in the Catawba River downstream of Sugar Creek.
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Figure 3-6

Simulated and Observed BOD in Fishing Creek at station SC 223.
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Figure 3-7 compares the ssmulated and observed BOD for the surface water of Fishing Creek
Reservoir. The simulated BOD fluctuated between 1 to 2 mg/l, whereas the observed BOD is
shown to fluctuate between 1 mg/l and 7 mg/I.

Figure 3-8 compares the ssmulated and observed BOD for the surface water of Lake Wateree.
The ssimulated BOD fluctuated between 0.5 to 1.5 mg/l. The observed BOD fluctuated between
0.5and 3.6 mg/l.

Clearly, the model has under predicted BOD for the surface water of both reservoirs.
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Figure 3-7
Simulated and Observed BOD in Fishing Creek Reservoir.
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Figure 3-8
Simulated and Observed BOD in Lake Wateree.
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OBSERVATIONS

WARMF appears to have slightly under predicted the measured BOD for the river stations. The
reason is that the model has probably not accounted for all BOD input to the river system. BOD
input from point source discharge is monitored and reported on aregular basis. The error of
BOD input from point source load is probably small. The nonpoint source load of BOD,
however, is not monitored. It is possible that the input data, as currently specified, has caused
the model to under predict the BOD load from land catchments.

WARMF appears to have grossly under predicted the measured BOD for the reservoir water.
The reason is that the model is predicting the concentration of BOD discharged by point source
and nonpoint source loads. The model has attenuated the BOD to very low valuesin arational
manner. The observed BOD, on the other hand, probably included oxygen consuming organic
matter not derived from the point and nonpoint source loads. Thisis evident from the
observation that the measured BOD concentrations were 7 mg/l in Fishing Creek Reservoir and
3.6 mg/l in Lake Wateree, both higher than the observed BOD concentrationsin their tributary
rivers.

It is common knowledge that dissolved oxygen in the reservoir is mostly controlled by
photosynthesis and respiration of algae rather than by the BOD of point and nonpoint source
loads. Because WARMF accounts for photosynthesis and respiration in the budget of dissolved
oxygen, the model is expected to simulate the dissolved oxygen profiles of the reservoir
accurately, despite the apparent under prediction of BOD.
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4. FLOW, TEMPERATURE AND DISSOLVED OXYGEN

GENERAL PROCEDURE

In model calibration, the parameters of the model are adjusted to match the simulated water
quality concentrations to the observed. The results for hydrology, temperature, and dissolved
oxygen will be described first, followed by the discussion of nutrient and algae simulations from
Lake Wylie to Lake Wateree.

The model parameters adjusted include initial soil conditions, land application rates of fertilizer,
adsorption coefficients of soil, and decay rates. The magjor emphasisis placed on the Fishing
Creek region, where USC monitoring data were removed, the region downstream of Bower point
source discharge, whose waste |oad characteristics were changed, and also the region, where the
observed TP data were revised.

FLOW SIMULATION

Flow data are available for the following locations:

* Fishing Creek at Rd 347

» Fishing Creek at station S-46-503

» CatawbaRiver above Sugar Creek

* McAlpine Creek at Sardis Rd

» Little Sugar Creek at Archdale Drive

The comparisons of simulated and observed stream flows for those locations are shown
respectively in Figure 4-1, Figure 4-2, Figure 4-3, Figure 4-4, and Figure 4-5.

From these comparisons, WARMF appears to predict the flow very well.
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Figure4-1

Simulated and observed flowsin Fishing Creek near Rd 347.
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Figure4-2

Simulated and observed flowsin Fishing Creek near S-46-503.
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Figure4-3

Simulated and observed flowsin the Catawba River above Sugar Creek.
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Figure4-4

Simulated and observed flow in M cAlpine Creek at Sardis Road.
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Figure4-5
Simulated and observed flow in Little Sugar Creek at Archdale Drive.

TEMPERATURE SIMULATION

Observed water temperature data are shown at the following locations:

» Fishing Creek at SC 223

e Fishing Creek at S-46-503

» CatawbaRiver above Sugar Creek Confluence
» Fishing Creek Reservoir

* Cedar Creek Reservoir

* LakeWateree

The comparisons of simulated and observed water temperature for those locations are shown
respectively in Figure 4-6, Figure 4-7, Figure 4-8, Figure 4-9, Figure 4-10, and Figure 4-11.

From these comparisons, WARMF appears to have simulated the seasonal variations of water
temperatures for rivers and lakes very well.
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Figure 4-6
Simulated and observed water temperaturesin Fishing Creek near SC 223.
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Figure4-7
Simulated and observed water temperaturesin Fishing Creek near S-46-503.
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Figure 4-8
Simulated and observed water temperaturesin the Catawba River above Sugar Creek.
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Figure4-9
Simulated and observed surface water temperaturesin Fishing Creek Reservoir.
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Figure 4-10

Simulated and observed surface water temperaturesin Cedar Creek Reservoir.
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Figure4-11

Simulated and observed surface water temperaturesin Lake Wateree.




DISSOLVED OXYGEN SIMULATION

Dissolved oxygen datafor rivers, particularly tributaries to Fishing Creek Reservoir, are
relatively sparse. Consequently, the comparisons are made only for reservoirs. Figure 4-12
compares the ssimulated and observed DO in the surface water of Fishing Creek Reservoir.
Figure 4-13 compares the simulated and observed DO in the surface water of Cedar Creek
Reservoir. Figure 4-14 compares the smulated and observed DO in the surface water of Lake
Wateree.

Based on these comparisons, WARMF appears to have simulated the seasonal fluctuations of
DO reasonably well. The ranges of smulated fluctuations are close to the observed. The
observed DO show values as high as 14 to 16 mg/l on occasionsin Fishing Creek Reservoir.
These high values were probably caused by large algal blooms, which were simulated by the
model but not as high as observed. The ability of WARMF to simulate accurately for the DO of
reservoir, despite the under prediction of BOD as discussed in the previous chapter, support the
common knowledge that DO in reservoirsis not controlled by BOD of waste discharges.
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Simulated and observed DO in Fishing Creek Reservair.
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Figure4-13

Simulated and observed DO in Cedar Creek Reservair.
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Figure4-14

Simulated and observed DO levelsin Lake Water ee.
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5. NUTRIENTS AND ALGAE

In this section, simulation results for nutrients and algae will be discussed. Nutrientsinclude
ammonia (NH3), nitrogen (NO3), total nitrogen (TN), phosphate (PO4), and total phosphorus
(TP). Total chlorophyll concentration is used to represent the sum of three algae groups, diatoms
and green and blue-green agae.

The simulation results will be discussed from upstream to downstream locations along the
Catawba River. Thefirst location is Lake Wylie, the most upstream water body of the Lower
Catawba River.

LAKE WYLIE

Lake Wylieisdivided into multiple stratified segmentsin WARMF. The results for the most
downstream segment of the reservoir (near the dam) will be discussed here. This segment is
referred to as segment 9, according to the numbering system used in WARMF.

Results for ammonia are shown in Figure 5-1. Figure 5-2shows the results for nitrate, and Figure
5-3 shows the results for total nitrogen. Phosphate and TP comparisons are shown in Figure 5-4
and Figure 5-5. Algae comparisons are made in Figure 5-6.

The comparisons indicate that WARMF has simulated all water quality parameters reasonably
well; the simulated values fluctuate seasonally within the ranges of observed data. Notable
differences are that the model appearsto over predict phosphorous concentration and slightly
over predicts total phosphate concentration. Also, the observed range of total nitrogen is dlightly
larger than the ssimulated values.

The simulated algae concentration is very close to the observed chlorophyll level. The matchis
particularly good for 1996 when more observed data are available. The model has simulated the
algal blooms occurring in the summer months, but the peak values are dightly lower than the
observed. Thisisunderstandable, because the model calculates the daily averages whereas the
observed values are based on the samples taken instantaneously likely during a daylight hour.

The model calculates the growth rate of algae as a function of light, temperature, and nutrients
(ammonia, nitrate, and phosphorus). The dynamic calculations involving multiple factors have
resulted in the reasonable prediction of total algae concentrations. These results are achieved by
using same coefficients for all rivers and reservoirsin the Catawba River Basin. Further
improvements may be made by varying algae coefficients specifically for each reservoir.
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Figure5-1
Simulated and observed NH3 at Segment 9 of Lake Wylie.
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Figure5-2
Simulated and observed NO3 at Segment 9 of L ake Wylie.
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Figure5-3

Simulated and observed TN at Segment 9 of Lake Wylie.
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Figure5-4

Simulated and observed PO4 at Segment 9 of Lake Wylie.
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Figure5-5

Simulated and observed TP at Segment 9 of Lake Wylie.
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Figure5-6

Simulated and observed total algae at Segment 9 of L ake Wylie.
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LAKE WYLIE TAILWATER

Thetailwater of Lake Wylie represents the reservoir releases to the downstream water body.
Figure 5-7 through Figure 5-11 compare the simulated and observed concentrations of NH3,
NO3, TN, PO4, and TP. The comparisons are generally very good, although the model appears
to dlightly over predict PO4 and TP.
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Figure5-7
Simulated and observed NH3 at the Lake Wylie tailwater.
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Figure5-8
Simulated and observed NO3 at the Lake Wylie tailwater.
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Figure5-9
Simulated and observed TN at the Lake Wylietailwater.
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Figure5-10
Simulated and observed PO4 at the L ake Wylie tailwater.
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Figure5-11
Simulated and observed TP at the Lake Wylie tailwater.
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SUGAR CREEK

Sugar Creek isatributary to Fishing Creek Reservoir. The Sugar Creek Watershed includes the
Charlotte metropolitan area of Mecklenburg County as shown in Figure 5-12.
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Figure5-12
Map of Sugar Creek Subwatershed.

Results of Sugar Creek simulations are shown near Fort Mill, not far from the mouth of the
creek. Figure 5-13 compares simulated and observed NH3. Figure 5-14 shows the simulation
results of NO3 for Sugar Creek, and Figure 5-15 shows the comparison of TN. Figure 5-16 plots
TP results for the creek.
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Figure5-13
Simulated and observed NH3 in Sugar Creek Near Fort Mill.

From these comparisons, WARMF appears to under predict afew of the highest observed spikes
in ammonia concentrations in Sugar Creek. The under prediction of these spikesis possibly a
result of the point-source data to the creek that is specified in the model on a constant monthly
basis. A few large point sourcesin the subwatershed contribute significant nutrient load,
including ammonialoading, to the creek. A daily specification of loading may improve the
simulation, but effluent is monitored only monthly. In general, however, the average simulated
NH3 concentration appears very close to the average observed values. The sameistrue for NO3,
TN, and TP in the remaining plots.
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Simulated and observed NO3 in Sugar Creek Near Fort Mill.
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Figure5-15

Simulated and observed TN in Sugar Creek Near Fort Mill.
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Figure5-16
Simulated and observed TP in Sugar Creek Near Fort Mill.

FISHING CREEK

The simulation results for Fishing Creek are discussed for stations S 46-163 and SC 223. Figure
5-17 shows the locations of these two stations. The City of Y ork treatment plant dischargesits
effluent at afew stream segments upstream of station S 46-163. Thus, the water quality of both S
46-163 and SC 223 stations are affected by the point source discharge.
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Figure5-17
L ocations where simulated and observed data are shown in the Fishing Creek Water shed.

For station S 46-163, Figure 5-18 shows the results for NH3. Figure 5-19 shows the results for
NO3, and Figure 5-20 shows the resultsfor TN. TP output is shown in Figure 5-21.

These comparisons indicate that WARMF predict the concentrations of NH3, NO3, TN and TP
within the ranges of observed data. However, there are spikes of high observed values not
simulated by the model. The model simulated clear seasonal variations of NO3 and TN in the
observed data. These are caused by the hydrology. Asshown in Figure 4-1 and Figure 4-2, the
simulated flows are low when the simulated NO3 and TN concentrations are high. The City of
Y ork has a constant discharge of their effluent. A higher flow in the receiving water provides
dilution and thus lower concentrations of nutrients.

5-12



Fizhing Creek near 546-163 - Ammonia. mgfl N

Fizhing Creek near SdE-j

Flaw, cmz -
Yelocity, mds

Temperature, C 008

dammoria, mgsl

Calcium, g/

t agrnesium, mogl
Patazzium, mg-

Sodium, ma/l

Sulfate, madl 5 o o2
Mitrate, gl W

Q.06 1

Ammonia, mgd N

00s

LR L L L LR L -

Depth, m R e

Chlaride, mg/ 000
Phozphate, mgdl P
Allkalinity, mgd CaCO3

Org. Carbor, mgd

Inorg. Carbon, mg-

BOD, mal

Total Algae, ug/l Chia 7|

10,01/1995 1
02011996
060 1/1996
10.01/1996
02011947
06011997
10,01/1947
020171992
060141998

BaseD30503 ]

¥| Show Obzerved Create TextFile | <* This constituent, all scenarios

Statistics | I.-’-'-.mmu:unia.D.i'-.T Al constituents, I BaseEISEIE]'

10,01/1998 1

02401/1999 1
D501 /1999 1+

o
o
i
1
E
T
=5

10011999 1

020152000 +
060152000 +
10012000

I
o
b=

Figure5-18
Simulated and observed NH3 in Fishing Creek at station S 46-163.
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Figure5-19
Simulated and observed NO3 in Fishing Creek at station S 46-163.
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Figure 5-20
Simulated and observed TN in Fishing Creek at station S 46-163.
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Figure5-21
Simulated and observed TP in Fishing Creek at station S 46-163.
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For station SC 223, Figure 5-22 shows the results for NH3. Figure 5-23 shows the results for
NO3. Figure 5-24 showstheresultsfor TN. Figure 5-25 shows the resultsfor TP.

These comparisons indicate that WARMF has under predicted NH3 concentrations of NH3. The
predictions of NO3, TN and TP are within the ranges of observed data. Some spikes of high
observed values are not ssimulated by the model.

The seasonal variations of NO3 and TN observed at station S 46-163 are still apparent at station

SC 223. These variations are flow related as discussed earlier. The impact of the point source
discharge of the City of Y ork appears to have been attenuated between S 46-163 and SC 223.
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Simulated and observed NH3 in Fishing Creek at station SC 223.
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Figure5-23
Simulated and observed NO3 in Fishing Creek at station SC 223.
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Figure5-24
Simulated and observed TN in Fishing Creek at station SC 223.
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Figure 5-25
Simulated and observed TP in Fishing Creek at station SC 223.
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FISHING CREEK RESERVOIR

Figure 5-26 shows the locations of Fishing Creek Reservoir, Great Falls Reservoir and Cedar
Creek Reservoir. Thetailrace of Fishing Creek Reservoir isthe forebay of Great Falls Reservoir.
The Great Fallstailraceis aso the Cedar Creek Reservoir forebay. In the following sections, the
model results will be discussed for these reservoirs in sequence.
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Figure 5-26
Locations of Fishing Creek, Great Fallsand Cedar Creek Reservairs.

Figure 5-27 through Figure 5-32 present the simulation results for NH3, NO3, TN, PO4, TP, and
total algae, respectively. All these comparisons are for the surface water of the reservoir, where
most of the algal growth occurs.

In genera, the model simulates nutrients and algae in well. Though the model under-predicts
some the peak levels of observed NH3, it tracks mean NH3 levels aswell asNO3 and TN fairly
well. The model also captures the general trend and magnitudes of observed PO4 and TP
concentrations. Simulated algae levels also follow observed datawell, though the spring diatom
bloom is under-predicted in some years (Figure 5-32).
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Figure5-27

Simulated and observed NH3 in Fishing Creek Reservoir.
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Figure 5-28

Simulated and observed NO3 in Fishing Creek Reservoir.
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Figure 5-29

Simulated and observed TN in Fishing Creek Reservoir.
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Figure 5-30

Simulated and observed PO4 in Fishing Creek Reservair.
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Figure5-31
Simulated and observed TP in Fishing Creek Reservoir.
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Figure5-32
Simulated and observed total algaein Fishing Creek Reservoir.

5-21



GREAT FALLS RESERVOIR

Great Falls Reservoir isimmediately downstream of Fishing Creek Reservoir. Figure 5-33
through Figure 5-38 present the simulation results for NH3, NO3, TN, PO4, TP, and total algae,
respectively. The model has good match with observed nutrient and algae concentrations. The
model follows the seasonal variations within the range of observed nutrient values, and the
model has simulated total algae fairly accurately.
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Figure5-33
Simulated and observed NH3 in Great Falls Reservoir.
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Figure5-34

Simulated and observed NO3 in Great Falls Reservoir.
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Figure5-35

Simulated and observed TN in Great Falls Reservoir.
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Figure 5-36

|Simulated and observed PO4 in Great Falls Reservair.
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Figure5-37

Simulated and observed TP in Great Falls Reservoir.
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Figure 5-38
Simulated and observed total algaein Great Falls Reservair.

CEDAR CREEK RESERVOIR
Cedar Creek Reservoir isthe last of the chain reservoirs. Figure 5-39 through Figure 5-41

present the simulation results for NH3, NO3, TN, PO4, TP and total algae, respectively.
Simulated nutrient and algae compare very well to their respective observed values.
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Figure 5-39

Simulated and observed NH3 in Cedar Creek Reservaoir.
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Figure5-34

Simulated and observed NO3in Cedar Creek Reservoir.
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Figure 5-40

Simulated and observed TN in Cedar Creek Reservoir.
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Figure 5-36

Simulated and observed PO4 in Cedar Creek Reservoir.
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Figure5-37

Simulated and observed TP in Cedar Creek Reservoir.
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Figure5-41

Simulated and observed total algaein Cedar Creek Reservoir.
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LAKE WATEREE

Lake Wateree is the last reservoir of the Lower Catawba River. In WARMF, Lake Wateree is
divided into several lake segments. Model results are compared to the measured data at segment
3, near the dam.

Figure 5-42 through Figure 5-47 compare the simulated and observed nutrients and algae at
segment 3 of Lake Wateree. Simulated TN and TP concentrations are within the range of their
observed values, with predicted TP at the upper end of the measured range. However, thereisa
fair agreement in the prediction of total algae. The model follows the observed seasonal
variations, and slightly under-predicts the short diatom blooms in early spring.
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Figure5-42
Simulated and observed NH3 in Lake Wateree.
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Figure5-43

Simulated and observed NO3 in Lake Wateree.
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Figure5-44

Simulated and observed TN in Lake Water ee.
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Figure 5-45

Simulated and observed PO4 in L ake Water ee.
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Figure 5-46

Simulated and observed TP in Lake Water ee.
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Figure5-47
Simulated and observed total algaein Lake Wateree.
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SUMMARY

Overdl, the model simulates nutrient and al gae concentrations in the Lower Catawba with a
reasonable accuracy. The discrepancies between simulated and observed nutrients do not lead to
significant error in algae concentrations in the reservoirs. The model appears to under predict the
diatom bloom in early spring. Additional calibration using the newly functional lake-dependent
algae coefficients may be able to better match observed algal concentrations through all seasonal
blooms including the spring bloom.
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6. POLLUTION LOADS

This chapter describes the model output for the point and nonpoint pollution loads from various
regions of the Lower Catawba River Basin. With this knowledge, the stakeholders can
determine where the pollution loads come from, what reductions scenarios can be formulated,
and who are responsible parties to the water quality deterioration.

The breakdowns of regions are Fishing Creek, Sugar Creek, Fishing Creek Reservoir, and Lake
Wateree. WARMEF provides two types of loadings (regional loading and source contribution).
Theregional loading is the pollution load from the local land in each region to the stream.
WARMF also output the regional loading attributable to various land use categories. The source
contribution loading displays pollution loads from local source and from the upstream sources.
The source loading is the product of the flow and concentration in the stream at the location of
the loading bar.

FISHING CREEK

Table 6-1 shows the regional loading from Fishing Creek Sub-watershed region. Theloading
rate isthe average rate in kilograms per day (kg/d) through the simulation period of September
1995 to December 2000. Also shown istheloading yield (area-weighted loading rate) in
kilograms per hectare per year (kg/halyr).

In the Fishing Creek Sub-watershed, over 75% of the total TP originates from pasture lands. TN
is derived from avariety of sourcesincluding pasture and cultivated lands. The deciduous and
evergreen contributions of TN are also significant. The loading from forest landsislikely a
result of NO3 in the form of wet deposition falling onto the large forested areas and then
leaching from the soil into the stream. The contributions from forested lands seem large due to
their large acreage. However, the yields of TN from forest lands are smaller than those from the
other land uses, excluding water and barren land types.

Table6-1
Nutrient loading and yield by land usein the Fishing Creek Sub-water shed.

Loading rate, Yield,
kg/d kg/halyr

Land use/source TP TN TP TN
Groundwater Pumping 0.0 0

Deciduous Forest 0.64 59.0 0.01 1.22
Evergreen Forest 0.74 62.7 0.01 1.21
Mixed Forest 0.52 36.7 0.02 1.23
Pasture 52.8 109.0 1.79 3.70
Cultivated 7.60 44.0 0.30 1.74
Recreation. Grasses 0.19 2.1 0.14 2.30
Water 0.01 1.5 0.01 1.11
Barren 0.01 1.6 0.01 1.13
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Low Intensity Develop. 0.73 8.2 0.12 1.34

High Intensity Develop. 0.29 3.5 0.16 1.92
Comm / Industrial 0.61 6.2 0.19 1.93
Wetlands 0 0 0 0
Point Sources 4.0 50.2 - -
TOTAL 68.2 385 - -

SUGAR CREEK

In the Sugar Creek Sub-watershed point sources contribute the overwhelming majority of TP and
TN (Table 6-2). Approximately 97% of TP loading and 90% of TN loading originate from point
sources. A few large wastewater treatment plants of Mecklenburg County in the Charlotte area
are responsible for the bulk of these point source loads.

Although lower in comparison to the point source loads, the non-point loads from devel oped
land uses (low and high intensity development, and commercial/industrial) are relatively highin
the region. For example, the TP load from developed lands in the Fishing Creek regionis 1.3
kg/d, as compared to atotal of 7.7 kg/d. The greatly urbanized lands in Mecklenburg County
generate arelatively significant level of nonpoint loads of nutrients to Sugar Creek.

Table 6-2
Nutrient loading and yield by land usein the Sugar Creek Sub-water shed.

Loading rate, Yield,
kg/d kg/halyr

Land use/source TP TN TP TN
Groundwater Pumping 0 0

Deciduous Forest 0.80 39.9 0.03 1.47
Evergreen Forest 0.78 47.7 0.02 1.39
Mixed Forest 0.46 24.4 0.03 1.44
Pasture 6.44 33.0 0.77 3.92
Cultivated 1.16 20.6 0.11 1.97
Recreation Grasses 0.86 14.5 0.15 2.48
Water 0.03 1.2 0.03 1.15
Barren 0.06 3.2 0.02 1.15
Low Intensity Develop. 3.65 59.3 0.09 1.44
High Intensity Develop. 3.09 38.1 0.15 1.86
Comm / Industrial 3.26 49.4 0.16 2.39
Wetlands 0 0 0 0
Point Sources 800 2530 - -
TOTAL 821 2860 - -
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FISHING CREEK RESERVOIR

Local pollution loads to Fishing Creek Reservoir including Cane Creek are presented in Table
6-3. The loading does not reflect contributions from the Catawba River section above Cane
Creek. The single highest contributor of TP is pasture lands. Pastures contribute about 70% of
the total load. Most of the TN load is from agricultural lands and from forested lands. TN in the
air and in therainfall are deposited onto a very large acreage of the forested lands. ThisTN
eventually leaches from the soil and reaches the streams and reservoir.

Table 6-3
Nutrient loading and yield by land use/sourceto Fishing Creek Reservair.

Loading rate, Yield,
kg/d kg/halyr

Land use/source TP TN TP TN
Groundwater Pumping 0 0

Deciduous Forest 4.08 44.4 0.10 1.13
Evergreen Forest 4.76 26.4 0.19 1.05
Mixed Forest 2.30 175 0.15 1.11
Pasture 73.8 36.4 8.08 3.99
Cultivated 9.72 30.8 0.46 1.45
Recreational Grasses 0.54 11 0.93 1.80
Water 0.95 29 0.38 1.19
Barren 0.11 1.6 0.06 0.89
Low Intensity Develop. 1.66 8.7 0.26 1.33
High Intensity Develop. 0.25 1.9 0.27 1.79
Comm / Industrial 0.95 5.7 0.37 2.04
Wetlands 0 0 0 0
Direct Precipitation 0 10.6 - -
Direct Dry Deposition 0 0.501 - -
General Point Sources 5.36 9.26 - -
TOTAL 104 198 -

LAKE WATEREE

Pollution loads and yields from the region adjacent to Lake Wateree are given in Table 6-4. The
agriculture lands contribute roughly 75% of TP. Over 65% of the TN load originates from NO3
and NH3 inrainfall (direct precipitation land use) that |eaches through the soil of forested lands

into the streams and lake.
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Table 6-4
Nutrient loading and yield by land use/sourcein the L ake Water ee Subwater shed.

Loading rate, Yield,
kg/d kg/halyr

Land use/source TP TN TP TN
Groundwater Pumping 0 0

Deciduous Forest 12.4 92.0 0.16 1.21
Evergreen Forest 18.8 125.0 0.18 1.17
Mixed Forest 8.7 38.8 0.28 1.25
Pasture 29.9 11.9 13.00 5.20
Cultivated 77.5 16.4 11.20 2.37
Recreational Grasses 0.1 0.1 3.38 1.90
Water 0.2 3.6 0.04 0.91
Barren 0.8 27.0 0.03 0.98
Low Intensity Develop. 0.2 11 0.23 1.10
High Intensity Develop. 0.0 0.0 0.19 1.53
Comm / Industrial 0.2 1.2 0.34 1.88
Direct Precipitation 0 67.6

Direct Dry Deposition 0 2.7

General Point Sources 0.1 3.5

TOTAL 149 391 - -

SOURCE CONTRIBUTIONS

WARMF displays source contribution loading when the Source Contribution button is selected
from the Loading dialog box Figure 6-1. TP and TN from upstream sources are shown for
Fishing Creek Reservoir and Lake Wateree in Figure 6-1 and Figure 6-2. Of the two bar charts
in each figure, the bar on the left corresponds to the Fishing Creek Reservoir, and the bar on the
right corresponds to Lake Wateree.

Figure 6-1 shows the source contributions of TP loads to Fishing Creek Reservoir and Lake
Wateree. The bar chart has three sections:. the light blue at the bottom represents the pollution
source contribution originating upstream; the green portion in the middle represents pollution
from local or regional nonpoint sources; and the magenta on the top is for local point sources.

The TP load to Fishing Creek Reservoir is 1,620 kg/d. The largest contributor to this load comes
from point source discharges to Sugar Creek, which drainsto the Fishing Creek Reservoir (60%).
Upstream source from Lake Wylie and above provides 18% of the load. The local nonpoint
source load contributes about 22% of total load.

The TPload to Lake Wateree is 1,430 kg/d. Asshown, nearly all the TP load to Lake Wateree
originates from the upstream source. Local regional load comprises less than 1% of the total
load.

By comparing the TP load to Fishing Creek (1,620 kg/d) to the TP load to Lake Wateree (1,430
kg/d), we can get an idea of the magnitude of TP that is being assimilated in Great Falls and
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Cedar Creek Reservoirs. If no assimilation were occurring, these values would be roughly
similar, assuming there are no significant TP inputsto either of the reservoirs. At least 12% of
the TP load to Fishing Creek Reservoir does not reach the lower |ake because of assimilation.

Figure 6-2 shows the source contribution of TN loads to Fishing Creek Reservoir and Lake
Wateree. The TN load to the Fishing Creek Reservoir is 8,390 kg/d. About 46% of thisload is
contributed by point source load to Sugar Creek, which drains to Fishing Creek Reservoir.
About 43% of the load is derived from Lake Wylie and above. The TN load to Lake Watereeis
8,460 kg/d. Nearly al TN load to Lake Wateree is from upstream source.
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Sour ce contributions of TP to Fishing Creek Reservoir and L ake Wateree.
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Figure 6-2
Sour ce contributions of TN to Fishing Creek Reservoir and L ake Water ee.

SUMMARY

Three sewage treatment plants of Mecklenburg County, North Carolina contribute major point
source loads of phosphate, ammonia, and nitrate to Sugar Creek, which drainsinto Fishing Creek
Reservoir. Large forest lands accept atmospheric deposition of ammonia and nitrate, which
eventually leach out to surface waters. The TP load to Fishing Creek Reservoir is 1,620 kg/d,
60% from point source, 18% from upstream. The TP load to Lake Wateree is 1,430 kg/d, all
from upstream. The TN load to Fishing Creek Reservoir is 8,390 kg/d, 46% point source and
43% from upstream. The TN load to Lake Wateree is 8,460 kg/d, al from upstream sources.
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